@b I oX _your position is our focus

Application Note

Topic: Implementing AssistNow® Online Client for u-blox GPS Receivers
GPS.G4-SW-05017-C

Author: | DA

Date : 27. Oct 2005 (Rev. C: 20. Dec 2006, GzB)

To:
We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express authority is strictly forbidden © 2006 u-blox ag.
T INtrodUCHION ... ———————— 1
7 O 1T 2
2.1 1= (] o TSRS SRS 2
2.2 SUBMITEET FUNCHION L.ttt ettt et e e eni e 2
2.3 SEIVET FUNCHION ..ottt ettt e e et e et et e e et 2
2.4 CHENT FUNCHION L.ttt ettt et s ettt et e e ee s 2
2.5 SUPPOIEA TECEIVEIS ...ttt ettt ettt et e et e 3
3 Detailed Description of the protocol ... e 3
30T REQUESE TOIMAT. 1ottt ettt 3
3.1.1 Requirements for the position and time parameterscccoovvieiiiie i 4
3.2 RESPONSE TOMMIET. .. e 5
A Sample Client implementation............icc e 7
B Sample Server implementation..........ciiiici i —————— 9
LY =T V=T Y =1 1] Vo 15

1 Introduction

u-blox maintains a world-wide GPS monitoring network, collects measurements from the base stations, and
distributes information derived from these measurements through an Internet-connected Server such as the
AssistNow Online Root Server or the AssistNow Online Proxy Server.

This distribution of information allows ANTARIS and ANTARIS 4 GPS receivers to speed up time to first fix (TTFF)
in @ number of applications where the receiver has a hard time collecting measurements autonomously, and
where an Internet connection is feasible.

u-blox provides access to a demo A-GPS setup which allows authorized users to connect to the u-blox AssistNow
Online Root Server. This setup supports customers in evaluating the performance benefits of implementing
ANTARIS and ANTARIS 4 based receivers with assistance data support.

This document describes the protocol being used between the server and the clients and gives a reference
implementation of a simple client.

Implementing AssistNow® Online Client for u-blox GPS Receivers ~ Application Note
GPS.G4-SW-05017-C Page 1

@b I oX _your position is our focus

2 Overview

2.1 Setup

The following diagram shows the overall system setup. This document describes the functions which shall be
implemented in [4], and the protocol being spoken through [3].

/ \ / \
| GPS data submitter 1 | | GPS data submitter 2 | [1]
\ / \ /
I I
A\ A\
I |
/ \
| server | [2]
\ /
I | |
v v v [3]
S P I S [
/ \ / \ / \
| client 1 | | client 2 | ... | client n | [4]
N/ \n___/ N/
V. V. V.
/ \ / \ / \
|ANTARIS RX| | ANTARIS RX| | ANTARIS RX| [5]
N/ \n___/ N/

2.2 Submitter Function

Submitters [1] are reference GPS receivers located worldwide. These submitters monitor the GPS constellation
continuously and submit their measurements to a central server.

At the time of writing, the setup contains two submitter stations, located in US and Europe. These stations allow
a full coverage of Europe and the US, and western Asia. A third submitter station is being setup, increasing
coverage in the western Pacific region.

2.3 Server Function

The server [2] collects measurements from its slave. The server listens on a specific TCP/IP port where assistance
clients submit requests. The server answers these requests, returning whatever information the client requested
and the server has available.

The server requires that clients authenticate using a username/password combo. It also requires that the client
transmits an approximate position of its own location, since the information sent by the server is localized to the
clients location, in order to save bandwidth.

2.4 Client Function

The Clients’ [4] function is to connect to the server, request the information, and evaluate the results. In case of
a successful response, the client should then transmit the information received (without the status headers) to an
Antaris receiver [5] through its physical connection (USB, UART), possibly relayed through some networks.

Implementing AssistNow® Online Client for u-blox GPS Receivers ~ Application Note
GPS.G4-SW-05017-C Page 2

@b I oX _your position is our focus

2.5 Supported receivers

The following ANTARIS receivers are prepared for processing the information delivered by the server
- Al ANTARIS 1 receivers, running firmware versions 3.01, 3.04 or 3.10

- All ANTARIS 4 receivers, running firmware versions 4.00 or 4.10

3 Detailed Description of the protocol

This section describes the protocol between the u-blox server, and the client requesting information.

The information exchange is loosely built around the HTTP protocol stack. Upon reception of an URL-like
request, the server will respond with an HTTP-style header and content. After delivery of all data, the server will
terminate the connection.

3.1 Request format.

The request is sent from the client to the server, immediately after establishing the socket connection.

A request is sent in plain ASCII, and has the following form

key=value; key=value;key=value;..\n

The following rules apply:
- The order of keys is not important.
- Keys and values are case sensitive.
- Key/value pairs must be separated by semicolons

- The request must be terminated with a newline character

The following keys are supported

Key Unit/Range | Mandatory/Optional | Comment
Name

cmd String Mandatory This key determines what kind of information the client
requests from the server.

- "full” delivers Ephemeris and Almanac data and
Approximate Time and Position to the client

- "aid” is identical to “full”, but does not deliver
Almanac

- "eph” only delivers Ephemeris which is of use to the
client at its current location

- "alm" delivers Almanac data for the full GPS
constellation

user String Mandatory The username, for example “foo@bar.com”. This must be a
valid Email Address, as important server maintenance messages
will be sent to this address

pwd String Mandatory The password. This field is transmitted in clear text, so it shall
not be a safety critical password. Passwords are assigned by u-

Implementing AssistNow® Online Client for u-blox GPS Receivers ~ Application Note
GPS.G4-SW-05017-C Page 3

@b I oX _your position is our focus

blox and are only valid for a given Email address.
lat Numeric “Half”-Mandatory Approximate user position in WGS-84 Latitude / Longitude in
lon [degrees] Either lat/lon or units of degrees and fractional degrees.
ex/ey/ez is mandatory | Example:
"lat=47.2;1lon=8.55".
alt Numeric Optional Approximate user altitude above WGS84 Ellipsoid in units of
[meters] meters.
ex Numeric “Half”-Mandatory Approximate user position in ECEF Frame in units of meters
ey [meters] Either lat/lon or Example:
oz ex/ey/ez is mandatory | "ex=4286464.77;ey=645609.71;ez=4663731".
pacc Numeric Optional Approximate accuracy of submitted position (either lat/lon or
[meters] ex/ey/ez). If this value is not provided, the server assumes an
accuracy of 300km.
latency | Numeric Optional Typical latency between the time the server receives the
[seconds] request, and the time when the assistance data arrives at the
GPS receiver.
The server uses this value to correct the time being transmitted
to the client (if cmd=full or cmd=aid).
Example:
"latency=0.27".
Example:

cmd=aid;user=foo@bar.com; pwd=whatever;lat=47.28;1on=8.56;pacc=1000\n

3.1.1 Requirements for the position and time parameters
The position that is being sent to the server is being used for two purposes:

- The server determines the currently visible satellites at the user position, and only sends ephemeris data
of those satellites which should be in view at the location of the user. This reduces bandwidth
requirements

- The server also feeds back the position and optional accuracy to the user’s ANTARIS receiver. Depending
on the accuracy of the provided data, the receiver can then choose to select a better startup strategy.
For example, if the position is accurate to 100km or better, the ANTARIS receiver will choose to go for a
more optimistic startup. This will result in quicker startup time. The receiver will decide which strategy to
choose, depending on the ‘pacc’ parameter. If the submitted user position is less accurate than what is
being specified with the ‘pacc’ parameter, then the user will experience prolonged or even failed
startups.

The time that is being sent to the receiver is the time when the request arrived at the server, corrected by the
optional ‘latency’ value. The client needs to ensure, that the nominal latency between receiving the data from
the server, and the arrival of the data at the receiver is below 1 second (plus what is being optionally set in the
latency value). If the latency time is longer, the receiver may experience prolonged or even failed startups.

Implementing AssistNow® Online Client for u-blox GPS Receivers ~ Application Note
GPS.G4-SW-05017-C Page 4

@b I oX _your position is our focus

If the latency is not deterministic (meaning, that the client can not announce this to the server through the
latency parameter), then one may choose to only use the ‘eph’ command.

3.2 Response format.

Upon successful reception of a client’s request, the server will return data and terminate the connection.
The data is split in two parts:

- Aheader containing ASCII data, describing the data that follows

- A data section with 8-bit raw binary data or ASCII data, depending on the request.

In case of a successful, fully authorized request, a typical response from the server looks as follows:

u-blox a-gps demo server (c) 1997-2005 u-blox AG\n <1>
Content-Length: 2392\n <2>

Content-Type: application/ubx\n <3>

\n <4>

<<5> 2392 bytes of binary day data>

u _n

Everything within “<” and “>" is not being sent by the server, but is added here for descriptive purposes. The
“\n" indicates the newline character.

1. This is the welcome message from the server
2. The Content-Length line will tell how many bytes of data will be sent in the data section

3. The Content-Type line describes what format the data is in. In case of a successful request, this will be in
“application/ubx” format

4. An empty line indicates the end of the header, and the start of the data section

In the data section, the indicated number of raw 8-bit data bytes will be sent. The client shall forward
this data unmodified to the GPS receiver. Please note that in cases of “full” and “aid” commands, the
received data shall be modified immediately, as the data contains approximate knowledge of time.
Delays of 1 second or above may result in degraded startup performance of the receiver.

If an error happens, the server will respond slightly different:

u-blox a-gps demo server (c) 1997-2005 u-blox AG\n <1>
Content-Length: 38\n <2>

Content-Type: text/plain\n <3>

\n <4>

error: no approximate position given\n <5>

Everything within “<” and “>" is not being sent by the server, but is added here for descriptive purposes. The
“\n"” indicates the newline character.

1. This is the welcome message from the server

2. The Content-Length line will tell how many bytes of data will be sent in the data section

Implementing AssistNow® Online Client for u-blox GPS Receivers ~ Application Note
GPS.G4-SW-05017-C Page 5

@b I oX _your position is our focus

3. The Content-Type line describes what format the data is in. In case of a failure request, this will be in
“text/plain” format

4. An empty line indicates the end of the header, and the start of the data section

In the data section, the indicated number of ASCII data bytes will be sent. The client shall not forward
this to the receiver, as it is an error message

The following error messages are currently delivered by the server:

Error Message: Reason

no command given There was no command in the request
invalid command A command was requested but is not supported
authorization failed - Username or password is missing

- The username is not valid

- The password does not match to the username

no approximate position given | Neither latand lon, nor ex, ey and ez values were given in the
request

Implementing AssistNow® Online Client for u-blox GPS Receivers ~ Application Note
GPS.G4-SW-05017-C Page 6

@b I oX _your position is our focus

A Sample Client implementation

The following code implements a typical client. It connects to the server, send its request, receives the data and,
if of application type UBX, sends that data to a GPS receiver via a serial line.

The sample code is written in Perl language and has been tested on a Linux system. Please see your favourite
Operating System and Programming Language for information on generic Serial Port- and Socket-Programming.

#!/usr/bin/perl -w

Package for Serial Port handling:
use Device::SerialPort;

Package for Socket connections:
use I0::Socket;

S A A
INITIALIZATION
HhEHEHAA A AR RS EE A R

R R R
RS232 settings
R R R

Sport '/dev/ttyS0"';
Sbaud = 57600;

HhEHEHAAAA AR EE A

SERVER settings
FHAFFH A AR H AR AR AR
Saiding_server = 'agps.u-blox.com';
$aiding_port = 46434;

Suser = 'foo@bar.com';

Spwd = 'whatever';

$lat = 47.28;
$lon = 8.56;
Sacc 1000;

Srequest = "cmd=aid;user=$user;pwd=$pwd;lat=$lat;lon=$lon;pacc=S$acc\n";

open the serial port, using the Device::SerialPort methods
my $gps = Device::SerialPort->new ($port) || die "Can't open $port: $!";

apply settings to the serial port

Sgps—>baudrate ($baud) || die "fail setting baudrate";
Sgps—->parity ("none") || die "fail setting parity";
Sgps—>databits(8) || die "fail setting databits";
Sgps—>stopbits (1) || die "fail setting stopbits";
Sgps—>handshake ("none") | | die "fail setting handshake";
Sgps->write_settings || die "no settings";
HHEHHH AR
OPEN CONNECTION TO SERVER
HHHHHH AR

print "Connecting to server $aiding_server:$aiding_port\n";
Sagps = IO::Socket::INET->new("$aiding_server:$aiding_port")

|| die "unable to contact $aiding_server: $!\n";

HhEHEHAAAH AR
SUBMIT REQUEST
HhEHEHAH A AR E A

print $agps Srequest;

Implementing AssistNow® Online Client for u-blox GPS Receivers ~ Application Note
GPS.G4-SW-05017-C Page 7

@b I oX _your position is our focus

HhEHEHHAAA AR AR
RECEIVE RESPONSE HEADER
HhEHEHAAAA AR

while ($_ = Sagps->getline)
{

$_ now contains one ASCII line from the server

if (/~\s*\n$/) # if we get an empty line
{
last; # jump out of loop

} else {
Look whether it has t
if ($_ =~ /Content-(\S+) :\s* (\S+)/)

{
Sheader{$1} = $2;
} else {
server sends something we don't need.

}

S A A
LOOK AT HEADER, DECIDE ACTION
S A A

If Content Type is text/plain, we dump data to
the terminal [must be error or something else
the GPS receiver does not understand]

if (defined S$header{'Type'} && (Sheader{'Type'} eqg "text/plain"))
{
while ($_ = Sagps->getline)
{
print $_;
}

}

If the Content-Type is is application/ubx
we read in that full chunk of data
and send it to the receiver right away
if (defined S$header{'Type'} && (S$Sheader{'Type'} eq "application/ubx"))
{
read a number of bytest
if (read($agps, $Subxdata, $header{'Length'}) != $header{'Length'})
{
die "wrong number of bytes received\n";
}

say what we're doing
printf "Aiding Data: %s bytes \n",Sheader{'Length'} ;

send it to the ANTARIS receiver
Sgps->write ($ubxdata) ;

... and what until the Serial TX buffer is emptied
Sgps->write_drain();
}

close the GPS receiver port
undef $gps;

and the socket

undef S$agps;

Implementing AssistNow® Online Client for u-blox GPS Receivers ~ Application Note
GPS.G4-SW-05017-C Page 8

@b I oX _your position is our focus

B Sample Server implementation

This sample code basically implements an Aiding server, for deployment in a closed system. An example of such
a system would be a fleet management system, where there is a communications link between individual
vehicles and the central server.

This server sample code has the following characteristics:

e Client Side (i.e. GPS receivers that need Aiding data)

o

(e]

o

Communication with the clients is done through TCP/IP.

Clients shall autonomously connect to Port 46434 on the server, and request aiding data (i.e.
Clients need to Pull the data)

= Adding Push- or Broadcast-like setups can be achieved by modifying the source code
accordingly

No authentication is being done to the clients.
Every connection gets a current set of ephemeris, and AID-INI (if enabled in the server)

The AID-INI message provided includes a rough position- and time-estimate. Please read the
comments in the source code for function clientdata_prepare() on possible options.

The communication to the client is HTTP like, as with the u-blox AGPS Server. See the
implementation of function clientdata_transmit().

All data transmitted from the clients to the server is ignored.

e Server Side

o

o

e Generic

o

o

o

(e]

Instead of having a local GPS receiver collecting Ephemeris data, that Ephemeris data is being
downloaded from the public u-blox server at regular intervals. Communication with that server
is also done through TCP/IP, and requires an Internet connection. For this functionality, a user

account on the u-blox server is required. See the implementation of retrieve_ephemeris() for
details.

The server is multi-client capable, =fork()=ing individual processes. See the main loop in the
beginning of the source code.

The source is written for Perl 5. It has no special requirements on external Packages other than
the standard 10::Socket. Using Time::HiRes would be beneficial if the time of the server is

synchronized to a global standard, and if the network latency from the server to the clients is
low or constant.

Operational parameters (username, password, timeout values, appr. position) can be set in the
source.

All logging is done to STDOUT, errors go to STDERR

The source code includes comments which document each step

Implementing AssistNow® Online Client for u-blox GPS Receivers ~ Application Note
GPS.G4-SW-05017-C Page 9

@b I oX _your position is our focus

o The source code has been tested on Linux 2.4 and 2.6, and Windows XP (ActiveState’ Perl).

#!/usr/bin/perl
B R Rk

Copyright (C) u-blox ag
u-blox ag, Thalwil, Switzerland

All rights reserved.

This source file 1s the sole property of u-blox AG. Reproduction or
utilization of this source in whole or part is forbidden without the written
consent of u-blox AG.

B REEE A AR R R A R R R R R R R R

Project:
ANTARIS AGPS CACHING SERVER
Description:
Multi-client daemon with regular ephemeris cache
update from an Internet site
R R o i i i i

Credits

— socket/daemon code inspired by 'Advanced Perl Programming',
Chapter 12.

— aiding functionality: u-blox internal development

— aiding protocol: see UBX protocol specification

S HE S HE S 3 S SR S S S S S S S S S S S 3E S 3E S 3 3E 3k 3 3

B
use strict;

use I0::Socket;

#use Time::HiRes gw (time); # If available....

Settings

Username/Password. Please fill in what agps-account@u-blox.com
gave you

my Suser = 'you@somewhere.com';
my $pass = 'Asdfghjkl';

my $lat = 47.28; # Appr. Position, being used for Ephemeris transfer
my $lon = 8.56; # from server. [Degrees]

my $acc = 1000; # [m]

Which port to listen to for clients to connect
my SLISTENPORT = 46434;

Parameters to access the Ephemeris Server

my SEPH_SOURCE = 'agps.u-blox.com:46434';
my S$SEPH_REQ = "cmd=eph;user=$user;pwd=S$pass;lat=$lat;lon=$lon;pacc=Sacc";
my $sock;

my S$client;

my S$get_eph_retrieval_time;
my S$eph_data;

$sock = new IO::Socket::INET(LocalPort => SLISTENPORT,
Reuse => 1,
Listen => 5)
or die "can't create local socket: $@\n";

Timeout the socket, so that the parent process can
do some other work, and get out of the blocking

Implementing AssistNow® Online Client for u-blox GPS Receivers ~ Application Note
GPS.G4-SW-05017-C

Page 10

@b I oX _your position is our focus

accept () call
$sock->timeout (10) ;

Avoid Zombies
$SIG{CHLD} = sub { wait(); };

print STDOUT localtime(time()) . " Accepting connections on Port ", SLISTENPORT, "...\n";
[idddddgdddddddgdddsddgddddddtdddddddnddddadddaamadkinaidi

#
#
This is the main loop.

In here, we

- accept new client connections, fork, and handle the client
- periodically check for ephemeris

— repeat the above forever

#

#

BT
while(l) # loop forever
{
Check for new ephemeris
retrieve_ephemeris (SEPH_SOURCE, $SEPH_REQ) ;

Wait for new connections
if ((defined $eph_data) &&
(length ($eph_data)>0) &&
($Sclient = S$sock->accept())
)
{
if (defined $client)
{

new connection established
print STDOUT localtime(time()) . "™ " . S$Sclient->peerhost() .":".$client->peerport() . "
connect\n", ;
Fork, to have the server process listen again immediately
if (fork() == 0)
{
my $cli_data;
$cli_data = clientdata_prepare($client);
Child Process - send data
clientdata_transmit ($client, $cli_data . $eph_data); # send concatenated data (client-specific
aid-ini and ephemeris)
Sclient->close () ;
}
}
else
{
print "Undefined client\n";
}
}
}

1; #never get here

B o
The following function prepares a UBX-AID-INI message

The receiver can benefit if we provide it an
approximate position and time.

The better the position- and time knowledge, the faster
it can start up. An approximate position (for example,
with an uncertainty of 100km) is still better than no
position information at all.

One possibility is to provide the receiver with his last
reported position out of a fleet management software,
and increase the uncertainty of the postion information
with the age of the information

If this is not possible (for example, because we do not
have even a rough idea where our client is), we simply
return an empty string.

H= S S S S S S S S S S S S S S S e e e

Implementing AssistNow® Online Client for u-blox GPS Receivers ~ Application Note
GPS.G4-SW-05017-C Page 11

your position is our focus

S
=2
o
>

If it is possible to do a position aiding, we put
together an UBX message. For the format of AID-INI,
please refer to the protocol specification

If an ANTARIS receiver gets AID-INI data, but already has
better knowledge of position and/or time (which it finds
out by comparing the 'accuracy' numbers) than what is
provided, it will ignore the less accurate data
automatically

H= S 3 3 3 W 3 S 3

FHEFHAAEEA A AR RS A AR R R R R R R

sub clientdata_prepare
{
my $socket = shift;

my $posx; # ECEF X component in meters
my $posy; # ECEF Y component in meters
my $posz; # ECEF Z component in meters
my $posacc; # Position accuracy estimate in meters

my $timenow; # Current time in seconds since GPS 0:0
my $timeaccuracy; # Etsimated Time accuracy

my $aidini=""; # Buffer for assembling AID-INI message
__
ESTIMATE POSITION OF THE CLIENT
__
Example 1:
#
lookup last position of this client from database
by identifying the client with its IP number
#
my Sage
($posx, $posy, $Sposz, Sage) = lookup_last_position($socket->->peerhost ())
#
Example 2:

Send all clients the same position with an accuracy
figure that covers all of our fleet (for example, size
of the country they operate in)

H= H 3 I

Sposx = 4286470.0; # Example position of u-blox HQ
$posy = 645612.0;

Sposz = 4663733.0;

Sposacc = 1500000; # Estimated accuracy 150km

Example 3:

#

Don't do AID-INI - simply return an empty string

#

return "";

__

ESTIMATE TIME in GPS TIME FRAME

__

the following assumes that the Server where this code
is run, is somewhat accurately synchronized (sub 200ms
to UTC), for example using NTP

#

Stimenow = time(); # could use Time::HiRes here, to get sub-second resolution (see 'use'

statement at the top)
Stimenow += 15 - 3657*86400 ; # correct offsets of time scales

Stimeaccuracy = 1.0; # estimated time accuracy in [s]
Stimenow contains seconds since GPS time 0:0

#
at this point, we could also correct $timenow

Implementing AssistNow® Online Client for u-blox GPS Receivers ~ Application Note
GPS.G4-SW-05017-C Page 12

@b I oX _your position is our focus

by an average network latency we see

#

Stimenow +=0.5;

to tune, this, one can observe the UBX-INF-DEBUG message
"RXM INI dt 725295.363 us". This message is output

after the first position fix, and gives the time
correction that was applied to the time the

receiver got [if a coldstart with aiding was done]

= H H S

1. Header
$aidini = pack "CCCCv", 0xb5,0x62,0x0B, 0x01,48;
2. Position Data
$aidini .= pack "11llvv",
int (100*$posx),
int (100*$posy),
int (100*$posz),
int (100*$posacc),

0;
3. Time
$aidini .= pack "vV1l",

int (Stimenow / (7 * 86400)), # Week Number
($timenow * 1000)% (7 * 86400 * 1000), # Time of week in [ms]

0;
$aidini .= pack "Vvv1lv",
Stimeaccuracy*1000, # Time accuracy
0,0,0;
4. Flags
$aidini .= pack "V",0x03; # == Time and Position valid
5. Checksum
$aidini .= ubx_checksum($aidini);

return $aidini;

WA R

The following function talks to a client and sends data

We are new in the server role, so talk HTTP-like
and write the data

FHEFHAAEEAA AR RS A AR R R R A R R R

ub clientdata_transmit

~— W0 F= = = H

my $socket = shift;
my $data = shift;

printf STDOUT localtime(time()) . " " . S$socket->peerhost() .":".$socket->peerport ()
bytes\n", length ($data) ;

printf S$socket "Content-Length: %i\n", length($data);

printf $socket "Content-Type: application/ubx\n";

printf S$socket "\n";

print $socket $data;

FHEFHAAEEA A AR RS AR R R A R R R

The following connects to a AGPS Server, and retrieves
Ephemeris data.

The function downloads data every S$eph_retrieve_period
second. It fills the global variable $eph_data
if successful.

We need to send a request to the server,
and get back data requested.

H= o o S S S

Implementing AssistNow® Online Client for u-blox GPS Receivers ~ Application Note
GPS.G4-SW-05017-C

send %i

Page 13

@b I oX _your position is our focus

sSrv: "<some welcome message \n"

clnt: "<request string>\n"

Srv: "Content-Length: <bytes>\n"

sSrv: "Content-Type: application/ubx\n"

sSrv: "\n" <-- indicates that data is following
sSrv: "<#bytes of data>"

If an error occurs, it prints to STDERR

[idddddgdddddddgddtsddnddddddddddddddnddddddddddnadkindidi
ub retrieve_ephemeris

~ 0 == = 3= F = 3 H S

Function Arguments
my $srv = shift;
my $req = shift;

Constants
my S$eph_retrieve_period = 600; # [s]

Local Variables
my S$bytes = 0;

my $type = "";

my Stmpbuf = "";

Check whether it is time to download again
return if (defined($get_eph_retrieval_ time) && (time() - $get_eph_retrieval_time <
Seph_retrieve_period));

open a new connection
my S$ephsrv = I0::Socket::INET->new($srv)
|| die "unable to contact $srv: $!\n";

send the request
print S$ephsrv $req . "\n";

and read the results. First, the header
while ($_ = Sephsrv->getline)
{
$_ now contains one ASCII line from the server
if (/"\s*\n$/) # if we get an empty line
{
last; # jump out of while loop - header completed
}
else
{
parse Content-Length and Content-Type
if ($_ =~ /Content—(\S+):\s*(\S+)/)
{
Stype = $2 if ($1 eq "Type");
Sbytes = $2 if ($1 eq "Length");
}
}
}

and then, the data
if ($bytes && (Stype eq "application/ubx"))
{
If we receive content-type application/ubx, we will
get the data we wanted, so read it
if ((read($ephsrv, $tmpbuf, $bytes) == $bytes) && (length($tmpbuf)==3$bytes))
{
print out a message if this ephemeris is different to what we had
if ((!defined $eph_data) || ($Seph_data ne $tmpbuf))
{
print STDOUT localtime(time()) . " $srv: new ephemeris retrieved\n";
Seph_data = S$tmpbuf;
}
remember time of retrieval
Sget_eph_retrieval_time = time();
}
else
{
print STDERR localtime(time()) . " $srv: unable to read $bytes\n";

Implementing AssistNow® Online Client for u-blox GPS Receivers ~ Application Note
GPS.G4-SW-05017-C Page 14

@biox

}

elsif (Sbytes && (Stype eq "text/plain"))

{
if we get content-type text/plain, it is
some error message —> read it, and dump it
to stdout

your position is our focus

if ((read(S$ephsrv, $tmpbuf, $bytes) == S$bytes) && (length(S$tmpbuf)==Sbytes))

{
Error message from the server - write to STDERR
print STDERR localtime(time()) . " S$srv: Stmpbuf";
}
else
{
Unable to read the number of bytes.

print STDERR localtime(time()) . " $srv: unable to read S$bytes\n";

Sephsrv->close () ;

undef Sephsrv;
B i i
Helper function to calculate checksum over a given payload
see UBX Protocol specification for more information

B i i
ub ubx_checksum

~ W == FH = H

my @vals = unpack "C*", $_[0];
shift @vals;shift @vals; # ignore header

my Sck_a = 0;

my $ck_b = 0;

foreach (Qvals)

{
Sck_a = (Sck_a + S_) & Oxff;
Sck_b = ($ck_a + Sck_b) & Oxff;

}

return (pack "v", ($ck_b << 8) + $ck_a);

C Server Settings

The following connection settings shall be used

Server Name agps.u-blox.com

Server Port 46434

Protocol TCP

Username / Password

Please contact support@u-blox.com

Implementing AssistNow® Online Client for u-blox GPS Receivers ~ Application Note
GPS.G4-SW-05017-C

Page 15

